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Abstract

An intercomparison of output from two models estimating spatially distributed surface energy fluxes from remotely sensed imagery is
conducted. A major difference between the two models is whether the soil and vegetation components of the scene are treated separately (Two-
Source Energy Balance; TSEB approach) or as a lumped composite (one-source approach; Surface Energy Balance Algorithm for Land; SEBAL)
in the parameterization of radiative and turbulent exchanges with the overlying air. Comparisons are performed using data from two largescale
field experiments covering sub-humid grassland (Southern Great Plains '97) and semi-arid rangeland (Monsoon '90) having very different
landscape properties. In general, there was reasonable agreement between flux output from both models versus a handful of flux tower
observations. However, spatial intercomparisons of model output over the full modeling domains yielded relatively large discrepancies (on the
order of 100 W m−2) in sensible heat flux (H ) that are related to land cover. In particular, bare soil and sparsely vegetated areas yielded the largest
discrepancies, with TSEB fluxes being in better agreement with tower observations. Modifications to SEBAL inputs that reduced discrepancies
with TSEB and observations for bare soil and shrub classes tended to increase differences for other land cover classes. In particular, improvements
to SEBAL inputs of surface roughness for momentum tended to exacerbate errors with respect to observed fluxes. These results suggest that some
of the simplifying assumptions in SEBAL may not be strictly applicable over the wide range in conditions present within these landscapes. An
analysis of TSEB and SEBAL sensitivity to uncertainties in primary inputs indicated that errors in surface temperature or surface-air temperature
differences had the greatest impact on H estimates. Inputs of secondary importance were fractional vegetation cover for TSEB, while for SEBAL,
the selection of pixels representing wet and dry moisture end-member conditions significantly influenced flux predictions. The models were also
run using input fields derived from both local and remote data sources, to test performance under conditions of varying ancillary data availability.
In this case, both models performed similarly under both constraints.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The partitioning of available energy between sensible and
latent heat flux has a strong impact on atmospheric boundary
layer development, which ultimately affects local and regional
climate (Avissar & Pielke, 1989). Remotely sensed estimates of
surface temperature derived from thermal satellite imagery
convey valuable information regarding spatial variations in flux
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partitioning, and provide a means for remotely monitoring
vegetation conditions and ecosystem health over the land surface
(Moran, 2004).

Model parameterizations of the interaction between a land
surface and the atmosphere are commonly called soil–
vegetation–atmosphere transfer (SVAT) schemes. Numerous
SVATschemes have been developed in recent years with varying
degrees of complexity, and with many designed to use remotely
sensed surface temperature to estimate surface flux partitioning
(Kustas & Norman, 1996). For homogeneous vegetation cover
conditions, a single-source approach may be suitable, but in
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most cases the landscape is under partial vegetation canopy
cover so that both soil and vegetation components contribute to
the net flux exchange as well as the remotely sensed signals
(Norman et al., 1995). For more complex canopies, two-source
modeling schemes provide a more realistic representation of the
turbulent and radiation exchanges with the lower atmosphere
(Huntingford et al., 2000; Lhomme et al., 1994; Merlin &
Chehbouni, 2004; Norman et al., 2000; Shuttleworth &Wallace,
1985; Verhoef et al., 1997; Zhan et al., 1996).

In principle, two-source models have two sets of resistances
across which individual, or local, source parameterization is
applied and possibly a within-canopy air layer where such
resistances meet, to allow interaction between the soil and
vegetation component. A single aerodynamic resistance then
connects the combined soil–canopy system with the local
atmosphere. A one-source model uses only one resistance and
assumes that all the surfaces can be represented by one effective
value of temperature and humidity (Huntingford et al., 2000).

Since a large portion of the earth's land surface is only
partially vegetated (such as in cropland and areas with sparse
vegetation), a two-source model should generally reflect the
surface energy balance with greater accuracy than a single-
source scheme, especially if the two sources show very different
radiometric behavior and atmospheric coupling. Still, many
authors have found that after appropriate tuning of the model
parameters, single-source models describe the overall surface
energy balance satisfactorily in spite of their simplification of
reality (Bastiaanssen et al., 1998b; Kustas et al., 1996; Troufleau
et al., 1997). A simple but correctly calibrated single-source
model might well out-perform an ill-parameterized dual source
model (Kustas, 1990). However, local calibration is not
generally possible for operational applications, rendering
many one-source approaches useless when applied to new
landscapes unless vegetation structure, fractional cover and
other factors are considered (Matsushima, 2005; Su et al., 2001).

Remote sensing-based energy balance models tend to be
validated with a handful of tower-based flux observations
(Bastiaanssen et al., 1998b; Mecikalski et al., 1999), or more
regionally with aircraft (Kustas et al., 2001, 2006a,b; Song et al.,
2000). Although these validation experiments demonstrate that
these models yield accurate surface flux estimates at the
measurement sites, the question remains whether they are
performing well over the broader landscape. Moreover, it is
difficult to assess how generally applicable the models are
outside the range of conditions sampled. To address these
questions and to evaluate the uncertainty among various remote
sensing-based SVAT models, intercomparisons of flux maps
under a wide range of environmental conditions need to be
performed. An intercomparison of single and dual sourcemodels
by French et al. (2005) showed that despite systematic
agreement for all flux components, the models had significant
sensitivities to input uncertainties. Agreement in the turbulent
fluxes was difficult to assess due to differences in model
parameterizations, thus indicating the need for a further, in-depth
analysis of each model.

In this study, a comparison is made between tower-based
flux measurements and estimates from models representing
single- and two-source SVAT schemes. A spatial intercompar-
ison between the models is also performed over a range of
environmental conditions. The comparisons are conducted over
field campaign sites in Arizona (semi-arid climate) and
Oklahoma (sub-humid), in landscapes having very different
length scales of heterogeneity and a full range in cover and
surface moisture conditions.

The main objective of this study is to assess whether the
physical simplifications made in a one-source modeling scheme
lead to significant errors in flux estimates, in comparison with
the more detailed two-source modeling framework. In addition,
a sensitivity analysis is performed to determine the inputs that
cause significant uncertainty in model heat flux computations.
The two models are also evaluated using both locally and
remotely derived model input and calibrations, providing
greater insight as to the utility of both modeling approaches
when applied under different input constraints.

2. Model description

2.1. Model similarities

The one-source Surface Energy Balance Algorithm for Land
(SEBAL) modeling scheme developed by Bastiaanssen et al.
(1998a) is used here in conjunction with the iterative flux profile
method (Gieske, 2003), implemented for calculation efficiency.
The Two-Source Energy Balance (TSEB) model is described in
Norman et al. (1995), with more recent updates in Kustas and
Norman (1999) and Kustas et al. (2004). Both schemes use
remotely sensed surface temperature as a primary boundary
condition for providing estimates of instantaneous fluxes of net
radiation (RN), soil (G), sensible (H ) and latent heat (LE). Both
SEBAL and TSEB have been validated under a range of
environmental conditions (Anderson et al., 2007; Bastiaanssen
et al., 2005; Crow & Kustas, 2005).

Both schemes provide estimates of instantaneous surface
fluxes by solving the energy balance equation:

RN ¼ Gþ H þ LE ð1Þ
net radiation estimation is quite similar for both models (and
even interchangeable without significantly changing model
results, see Section 6.2), following:

RN ¼ RA
S þ Rz

S þ RA
L þ Rz

L

¼ ð1−q0ÞdRA
S þ e0deadrdT

4
a−e0drdT

4
R

ð2Þ

where R is radiation, with subscripts N, S, and L referring to net,
shortwave and longwave, and the superscripted arrows indicate
incoming (downward) and outgoing (upward) flux directions.
The Greek letters ρ, ε, and σ represent albedo, emissivity and
the Stefan–Boltzmann constant, respectively, T is temperature
and the subscripts R and a refer to radiative surface and
atmospheric level. For soil heat flux, both algorithms estimate
G as a fraction of the net radiation. In TSEB, the soil heat
flux is determined as a fraction of the net radiation just above
the soil surface as determined by modeling the divergence of net
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radiation within the canopy using a simplified two-stream
radiative transfer approach (Campbell & Norman, 1998).
SEBAL uses a semi-empirical approach to estimate net
radiation extinction in the canopy as a function of NDVI,
surface temperature and albedo.

The main difference between the models involves the
estimation of sensible heat flux and turbulent exchange
coefficients, primarily in how the land surface is treated: either
as a single-source (SEBAL), or as a dual source where the
radiative and convective exchange processes between soil and
vegetative canopies and the atmosphere are explicitly param-
eterized (TSEB). Both of these topics — formulation for H and
model inputs — are discussed in the next section.

2.2. Model differences

Apart from conceptual differences between the one-source
and two-source modeling schemes, there are several other
differences in how the TSEB and SEBAL models parameterize
surface–atmosphere exchanges. The TSEB model initially
assumes that the vegetation is unstressed and transpiring at
the potential rate, then uses the radiometric surface temperature
to constrain the canopy and soil components of H, and finally
computes soil evaporation as a residual to the energy balance
equation. If the resulting soil evaporation rate is negative
(unlikely around midday on a clear day, when thermal satellite
data are available), this is taken as a signature of vegetation
stress and the canopy transpiration component of LE is throttled
back (see Kustas & Norman, 1999; Kustas et al., 2004).
SEBAL, on the other hand, is built on the assumption that full
hydrological contrast (i.e., wet and dry pixels) is present in the
area over which the imagery is acquired, and that an empirical
relationship between TR and the difference between surface
temperature and above-canopy air temperature can be devel-
oped within the context of the scene by properly selecting hot
and cold pixels representing the conditions LE=0 and H=0,
respectively. SEBAL calculates latent heat (no discrimination
between soil and canopy components) as a residual of the
energy balance equation. Since LE is computed in part or in
whole as a residual by both models, it can accumulate multiple
modeling errors. Therefore, the focus in this intercomparison is
to assess differences in model fields of H.

Although both schemes use physically-based temperature
gradient/resistance approaches to model H, the methodologies
for estimating the gradients and resistances are very different. In
SEBAL, the selection of the so-called dry and wet pixels (the
hot and cold end-members of surface temperature) essentially
determines the partitioning of available energy between H and
LE at all other pixels in the scene and helps to define resistance
values. In SEBAL, H is computed via a single-source resistance
scheme,

H ¼ qadCp

rah
dd Tasur ð3Þ

where rah is the bulk aerodynamic resistance to heat transport
and δTasur represents the difference between the surface
aerodynamic temperature for heat (Tz0h) and above-canopy air
temperature (Ta):

Tz0h−Ta ¼ d Tasur ¼ Hdrah
qadCp

ð4Þ

The value of Tz0h is related to the radiometric surface
temperature, TR, adjusting for the difference in the roughness
lengths for momentum (z0m) and heat (z0h), which enter in the
calculation of rah. This difference in roughness length is often
referred to as the kB−1 parameter (= ln(z0m / z0h)) and is
generally taken to be on the order of 2 for vegetation (Garratt &
Hicks, 1973), but can be much larger for sparse canopies, with
values of 12 derived over savannah (Verhoef et al., 1997). In
SEBAL, a nominal kB−1 value of 2.3 is applied over the entire
scene, tying z0h to a fixed fraction (1/10) of z0m. The roughness
length for momentum must then be specified over the scene. In
the original version of SEBAL (Bastiaanssen et al., 1998a) and
more recent implementations (e.g., Jacob et al., 2002), z0m was
estimated using an exponential relation with NDVI:

z0m ¼ expðc1þc2dNDVIÞ ð5Þ
where coefficients c1 and c2 are locally calibrated, if possible.
Later studies recognized that in addition to NDVI, canopy
height is also critical to determining surface roughness,
necessitating additional information on land cover/land use
(Tasumi et al., 2000).

In the SEBAL methodology, δTasur is not specified a priori
using observed temperature gradients, but rather deduced from
the surface radiometric temperature field under the assumption
that δTasur is linearly related to TR. Using an aggregation–
disaggregation technique for assigning local scale friction
velocity, an estimate of the aerodynamic resistance to heat,
rah, is computed for each pixel using values of z0h and z0m
specified as discussed above. Eq. (4) is then solved by flux
inversion to evaluate δTasur at the hydrological extremes (H=0
and H=RN−G) using representative cold and hot pixels
within the scene. The values of TR and δTasur derived at these
endpoint pixels are used to calibrate a linear relationship,
assumed to be valid across the entire modeling domain:

dTasur ¼ adTR−b ð6Þ
where a and b are linear regression coefficients that are site
and scene specific (Bastiaanssen et al., 1998a). At all other
pixels, δTasur is retrieved from TR using Eq. (6), and H is
computed from Eq. (4) given the pixel estimate of rah. It is
assumed that deviations of actual z0h from the nominal value
of kB−1 =2.3 are absorbed into the calibrated regression
equation, thus reducing the need for accurate specification of
z0h (and therefore rah) at each pixel. Implicit in the application
of Eq. (6) is the assumption that kB−1 is also linearly related
to TR across the scene of interest, and is adequately
constrained by flux inversion at the selected end-member
pixels. This assumption is fundamental in the calculation of H
for SEBAL, (Jacob et al., 2002; Norman et al., 2006). Details
on the procedure above can be found in Bastiaanssen et al.
(1998a, 2002) and Su et al. (1999).



Fig. 1. Selecting minimum and maximum end-members of key inputs for the two schemes, example DOY 183 during the SGP '97 experiment. Two-dimensional
scatterplots of surface temperature versus surface reflection and NDVI respectively to illustrate the selection of “wet” and “dry” surface temperature end-members in
the SEBAL scheme, and the NDVI histogram to select the values between which to scale the NDVI in the TSEB scheme. Solid lines represent the actual values chosen
(reference values), whereas the dotted lines represent values that are used to show the sensitivity of the model output to these parameters. The numbers refer to the
different scenarios described in the main text (see also Table 1).
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Following the original SEBAL formulation, the dry and wet
end-members are to be determined from the image itself, using
the observed TR−ρ0 and TR−NDVI relations, as shown in the
scatterplot in Fig. 1. This process can be difficult, since
selection and re-selection as well as some subjective decision-
making are required (Tasumi et al., 2000). However, similar
approaches for deriving near surface air temperature from
observed surface temperatures exist (Nemani & Running,
1989; Prihodko & Goward, 1997; Prince et al., 1998), where
also TR−NDVI scatterplots are used to facilitate determining
the relevant end-members in Fig. 1.

The wet pixel is selected at a location that has the lowest
surface temperature, but that is known to have vegetation cover.
Open water bodies should in general be avoided, due to the
problem of estimating the heat storage term, which is typically
much larger than G for land surfaces and has a more significant
time lag. If such areas are not available in the scene, another
option is to take the wet end-member equal to the near-surface or
screen level air temperature from the nearest weather station.
There is no consensus on how to select the hot pixel.
Bastiaanssen (1995) originally proposed to use the 95 percentile
hottest pixel in the image. However, this may create problems,
since multiple pixels with different roughness values may fit this
criterion and hence a subjective decision is still required in
selecting the hot pixel. Tasumi et al. (2000) proposed using the
hottest location in the image, preferably a man-made surface.
Another option that has been proposed is to select the hot pixel
having the lowest (relative) surface temperature, but that is
known a priori to be completely dry (Bastiaanssen, 2002;
personal communication).

For the TSEB model, an estimate of fractional vegetation
cover, fc (ϕ), apparent at view angle, ϕ, is needed to partition
the ensemble directional radiometric temperature, TR (ϕ), into
the temperatures for the soil and vegetation components via

TRð/Þc fcð/ÞdT4
c þ ð1−fcð/ÞÞdT4

s

� �1=4 ð7Þ
The vegetation and soil temperatures (Tc and Ts, respective-
ly) then help to define the partitioning of available energy
between H and LE. The sensible heat from the soil (Hs) and
vegetated canopy (Hc) and composite system (H ) was computed
using the parallel resistance formulation originally developed in
Norman et al. (1995), but with a slight modification to the
canopy resistance formulation:

Hs ¼ qadCP
Ts−Ta
rs þ ra

Hc ¼ qadCP
Tc � Ta
rah

H ¼ Hc þ Hs ð8Þ

where rs is the aerodynamic resistance to heat transfer from the
soil, ra is the aerodynamic resistance from the canopy air layer
above the soil (at height z0m+d0, where d0 is the displacement
height) to a reference level several meters above the canopy
where Ta (and wind speed) is measured, and rah is similar to
the rah formulation for SEBAL, assuming kB−1 =2. For details
on the resistance formulations see Norman et al. (1995) and
Kustas and Norman (1999). Typically in TSEB applications,
the momentum roughness z0m is estimated as a fraction of the
canopy height, hC, namely z0m=1/8 hC while the displacement
height is d0=2/3 hC, which is reasonable for vegetated
canopies (Brutsaert, 1982). Norman et al. (1995) also give a
series resistance formulation for the TSEB, where soil and
canopy fluxes jointly modify the microclimate inside the
canopy, generating feedback on the fluxes themselves. While
the series model likely gives a more accurate micrometeor-
ological description of the system, both versions of the TSEB
were found to give similar results for a wide range in cover
conditions (Li et al., 2005). The parallel version was
implemented here for simplicity.



Table 1
Values for Si (%) for the two models with±25% variation in the model
parameters from their reference values

Model
parameter

TSEB Model
parameter

SEBAL

−25%
Si (%)

+25%
Si (%)

−25%
Si (%)

+25%
Si (%)

z0m 1. −3 ρ0 16 −10
TR
1 −44 74 TR

1 17 −9
Ta
1 6 −7 z0m −5 −6

U −7 7 kB−1 2 4
hc −1 −0.5 δTasur −45 −3
fc −19 46 NDVI −11 27
LAI −15 30
End-member
NDVImin 5 −4 TR-min 20 −24
NDVImax 24 −9 TR-max 15 −27

Note: A different variation is taken for temperature values (±1%)1 due to
unrealistic deviations when using±25%. For the upper and lower limits (end-
members), a fixed deviation of ±0.05 (NDVI) and ±2 K (TR) is taken from their
reference values.

Table 2
Description of the statistics used in assessing the model performance

Statistical
variable

Description Equation

N Number of observations
bON Mean of the observed variable 1

n

Xn
i¼1

Oi

bPN Mean of the model-predicted variable 1
n

Xn
i¼1

Pi

So Standard deviation of the observed variable Xn
i¼1

ðOi−bONÞ2
n−1

" #1=2

Sp Standard deviation of the model-predicted
variable

Xn
i¼1

ðPi−bPNÞ2
n−1

" #1=2

MAD Mean absolute difference 1
n

Xn
i¼1

jPi−Oij

MAPD Mean absolute percent difference
100
bON

1
n

Xn
i¼1

jPi−Oij
 !

RMSD Root-mean-square difference
1
n

Xn
i¼1

ðPi−OiÞ2
" #1=2
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One method that has been used to retrieve fc (0) (ϕ=0, nadir
view angle) from remote sensing data is a scaled NDVI
approach (Choudhury et al., 1994):

fcð0Þ ¼ 1−
NDVImax−NDVI

NDVImax−NDVImin

� �p

ð9Þ

where the end-member NDVI values, NDVImax and NDVImin,
represent a surface fully covered by vegetation and completely
bare, respectively. The parameter p represents the ratio of a leaf
angle distribution term, Λ, ((=0.5 for spherical distributions;
Ross, 1975) to canopy extinction, κ, where p=Λ /κ. As in
SEBAL, the selection of NDVI end-members has some
uncertainty, although with a NDVI histogram analysis, the
selection of the minimum and maximum values can be fairly
accurate (see Fig. 1). Leaf area index (LAI), used in the
computation of net radiation divergence and wind speed decay
through the canopy layer (Kustas & Norman, 1999), can be
related to fc (0):

LAI ¼ lnð1−fcð0ÞÞ
K

ð10Þ

(Choudhury, 1987). Apparent cover fraction at view angle ϕ is
then obtained with

fcð/Þ ¼ 1−exp
−KdXð/ÞdLAI

cos/

� �
ð11Þ

where the directional clumping factor Ω(0) depends on canopy
architecture, as specified in Kustas and Norman (1999). Note
that the scaled NDVI approach to estimating fc and LAI is not
an integral part of the TSEB — other techniques exist for
estimating these surface parameters from remote sensing data,
such as inversion of the bi-directional reflectance function.

The more detailed description of radiation and turbulent flux
exchange in the TSEB model requires specification of several
parameters relating to canopy architecture; namely canopy
height, leaf width, and vegetation clumping factor — these are
typically assigned by land cover class. However, sensitivity
studies evaluating the uncertainty of the inputs to TSEB model
flux computations indicated that nominal values for most of the
canopy and roughness parameters can be used without causing
significant error (Anderson et al., 1997; Kustas & Norman,
1999; Zhan et al., 1996). Furthermore, the data requirements are
similar to one-source schemes that, unlike SEBAL, explicitly
account for differences in aerodynamic and radiative tempera-
tures (Matsushima, 2005). In situations where the local
meteorological data (air temperature and wind speed) required
by the TSEB are unavailable, a nested modeling approach can
be used to supply these inputs (Anderson et al., 2004; Norman
et al., 2003).

The SEBAL scheme derives necessary aerodynamic rough-
ness and resistance directly from remote sensing data using
semi-empirical relations. Moreover, SEBAL does not require
local Ta nor wind speed inputs, other than regional averages and
some estimate of the blending height (Su et al., 1999).

3. Experimental data

Data from two experimental sites were used in the model
intercomparisons, representing very different landcover condi-
tions in terms of canopy structure and spatial distribution of
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vegetation across the landscape. Both sites, however, have
significant areas of sparse vegetation cover — challenging
conditions for single-source modeling schemes.

The first dataset was collected during the Monsoon '90 field
experiment (Kustas et al., 1994), conducted in a semiarid
rangeland area within the USDA-ARS Walnut Gulch Experi-
mental Watershed near Tucson, Arizona. This region is
comprised primarily of shrubs ranging from nominally 25%
canopy cover for upland areas and up to 75% cover along
ephemeral channels, with a few areas still supporting primarily a
grassland ecosystem having generally less than 40% cover.
During the field campaign, aircraft-based visible (VIS), near-
infrared (NIR) and thermal-infrared (TIR) images at nominally
6 m resolution were collected on 3 days representing dry (Day
of Year—DOY 213), wet (DOY 216) and intermediate (DOY
221) soil moisture conditions (Humes et al., 1997; Schmugge
et al., 1998). In addition, eight micrometeorological towers
were distributed over the watershed, sampling fluxes and
atmospheric conditions over representative land cover types
(Kustas et al., 1994).

The second dataset was collected during the Southern Great
Plains experiment of 1997 (SGP '97) near EL Reno, Oklahoma
(Jackson et al., 1999). This region is primarily comprised of
grass lands/pastures and large tracts of winter wheat crop, which
by late June (start of the field campaign) was harvested wheat
Fig. 2. Modeled versus observed energy balance components a) RN, b) G, c) H, d) LE
for both schemes. The cross symbols represent SEBAL and circles TSEB output.
stubble or tilled bare soil. Remote sensing observations at VIS,
NIR and TIR wavelengths were collected using the Thermal
Infrared Multi-spectral Scanner (TIMS) and the Thematic
Mapper Simulator (TMS) airborne instruments at nominally
12 m resolution (French et al., 2000, 2003b). Data from 2 days
during late June and early July 1997, representing wet (DOY
180) and intermediate (DOY 183) surface moisture conditions,
are used. This study also uses data collected at four flux towers
operating in the El Reno study area, representing the main land
cover types with LAI ranging from 0 to 4 (Twine et al., 2000).

In the TSEB, the canopy extinction factor κ was set to 0.45
for the Monsoon site (Anderson et al. (1997) and 0.8 for the
SGP site, (French et al., 2003b). The vegetation clumping factor
Ω(0) is set to unity for both sites (no clumping). Although for
the Monsoon site this clumping factor is likely to be less than
one, the methods used to measure LAI implicitly included the
clumping effect, and previous studies have demonstrated that a
clumping factor of 1 gives reasonable results in this case
(Anderson et al., 1997; Norman et al., 1995).

4. Model sensitivity

In order to directly compare model sensitivities and their
dependencies on surface conditions, a sensitivity analysis for
both models was performed using the dataset from SGP '97 on
for the Monsoon '90 (DOY 213, 216 and 221) and SGP '97 (DOY 180 and 183)



Table 3
Statistics of model performance for computing surface energy balance
components for both sites

Component Model bON bPN bSoN bSpN MAD MAPD RSMD

Rn SEBAL 554 528 49 28 38 7 44
Rn TSEB 554 551 49 36 26 5 32
G SEBAL 143 149 36 18 24 16 29
G TSEB 143 120 36 27 27 19 35
H SEBAL 148 135 55 42 39 26 49
H TSEB 148 153 55 67 28 19 37
LE SEBAL 262 245 93 66 61 23 70
LE TSEB 262 278 93 103 53 20 62
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DOY 183, representing a range of environmental and land cover
characteristics. The model domain on this date exhibited patchy
moisture conditions following a large precipitation event on
DOY 179, while LAI varied from 0 in bare, harvested winter
wheat fields to ∼ 4 in dense grassland and riparian areas.
Sensitivity tests were performed for input variables that most
significantly affect H computation in the TSEB and SEBAL
algorithms (see Table 1), as summarized by Eqs. (3) and (8).
Although δTasur is derived from Eq. (6), and hence not
technically a direct input to SEBAL, it is still important to
assess the impact of uncertainties in δTasur as retrieved from this
simplified linear relationship with TR. Simulations with a
detailed soil–plant–atmosphere model indicate that Eq. (6) can
yield large retrieval errors (N5 °C) in δTasur over scenes with
widely varying roughness and vegetation stress conditions
(Norman et al., 2006).

In this analysis the sensitivity Si of a model to an input i is
defined as:

Si ¼ HF−H0

H0

� �
⁎100 ð12Þ

where H0, H+ and H− are the sensible heat flux predicted by the
model when the input equals its reference value i0, 1.25 · i0 and
Fig. 3. Model sensitivity in sensible heat output for DOY 183 in SGP '97 to changes
b) SEBAL. The numbers refer to the different scenarios described in the main text (see
the minimum end-member is lowered, whereas a “3” indicates the minimum value is
value for the maximum. Values from the bare soil site (ER13) are encircled.
0.75 · i0, respectively, with reference values used for all other
inputs. To capture a range in surface conditions, the sensitivity
tests were performed over the full SGP '97 modeling domain.
The reference input fields were obtained from local observations
and calibrations, as described in Section 5.1, and H0 was
computed across the domain. The values at each pixel in the
target input reference field were then perturbed to compute H+

and H−. Finally, H0, H+ and H− values for several pixels
encompassing the 4 tower sites were then averaged. As such,
these fluxes are assumed to be representative of the average
vegetation cover and moisture conditions, and surface temper-
ature states for this region, since the tower locations have been
shown to be fairly representative of the observed local variability
(Norman et al., 2003). The 25% deviation from i0 was not
applied to surface/air temperature (K) since such a departure
exceeds the physical limits of these inputs (see Table 1). Instead,
a 1% variation from i0 in surface/air temperatures was used.
Note that in the case of surface temperature this amounts to about
3° deviation, which is almost twice the uncertainty observed for
atmospherically corrected surface temperatures under these
circumstances (French et al., 2003a, 2000).

From the results in Table 1, it appears that variations in
SEBAL estimates ofH are less than 20% for the prescribed 25%
deviations in 4 out of the 6 input variables while for the TSEB,
variations in H estimates are less than 10% for 4 out of the 7
inputs. SEBAL is most sensitive to deviations in δTasur, with Si
reaching 45%, followed by sensitivity in NDVI (Si∼30%) and
albedo (Si∼15%). The TSEB model has greatest sensitivity to
the variation in TR yielding deviations from the reference
H value of up to 75%, followed by fc and LAI, with Si∼45%
and 30%, respectively. As shown in previous studies, the other
inputs for the TSEB scheme, such as vegetation properties and
roughness characteristics, do not contribute to significant errors
in H estimates (Anderson et al., 1997). Thus, both models have
the greatest sensitivity to errors in remotely sensed surface
temperature and surface–air temperature differences. Naturally,
sensitivities for both models will depend to some extent on the
in NDVI end-members for a) TSEB and in surface temperature end-members for
also Table 1): Scenario “1” represents the original parameter setting, a “2”means
taken higher, a “4” means the maximum is lowered and a “5” represents a higher
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exact choice of the reference values, but this type of detailed
sensitivity analysis is beyond the scope of the present study.
Here, area-average conditions are computed from the 4 flux
tower locations to produce “average” sensitivities, which are
confirmed by previous sensitivity studies (e.g., Anderson et al.,
1997; Zhan et al., 1996).

The sensitivity of TSEB to uncertainty in surface temperature
is greatly reduced when the TSEB is coupled with an atmospheric
boundary layer (ABL) model, allowing the air temperature at the
blending height (∼50 m) to be derived internally within the
model, adjusting to biases in TR (Anderson et al., 1997). Such a
modeling framework has permitted the development of a robust
and operational remote sensing-based approach for flux moni-
toring at regional scales (Anderson et al., 2003; Diak et al., 2004).

The sensitivity of both schemes to end-member selection in TR
(SEBAL) and NDVI (TSEB) was also tested with the DOY 183
SGP '97 dataset. Reference end-member values of TR used in
SEBAL in scenario 1 were TR-min=304 K and TR-max=333.7 K
(average values computed from several representative pixels).
The model was then re-run holding the dry end-member constant
at the reference value and modifying the wet end-member
by −2 K (scenario 2) and +2 K (scenario 3). Additional runs were
performed thereafter by keeping the wet end-member at the
original value, and selecting dry end-member pixels with
temperatures −2 K (scenario 4) and +2 K (scenario 5) with
respect to the reference temperature (see Fig. 1). A similar set of
scenarios was generated for the TSEB (see also Fig. 1): varying
the reference NDVImin (0.20) by −0.05 and +0.05 (scenarios 2
and 3, respectively), and varying the reference NDVImax (0.90)
by −0.05 and +0.05 (scenarios 4 and 5, respectively).

Model sensitivities to changes in end-member values are
presented at the bottom of Table 1. In general, uncertainty in the
selection of either the upper or lower limits of TR in SEBAL
tend to result in similar effects on the magnitude of variation in
H (on the order of 20–25%). The TSEB shows more sensitivity
(Si∼25%) to variations in NDVImax, defining full vegetation
cover conditions. At high cover, it becomes more difficult to
separate soil and canopy temperatures and fluxes and the TSEB
Table 4
Difference statistics between TSEB and SEBAL H output (TSEB−SEBAL) groupe

SGP '97 SEBAL TSEB

bHN bHN bΔHN

Landcover n (W/m2) (W/m2) (W/m2)

Bare soil 45073 89 222 133
Pasture 125602 91 119 27
Riparian 14519 51 106 56
Water 994 15 2 −12

Monsoon '90 SEBAL TSEB

bHN bHN bΔHN

Landcover n (W/m2) (W/m2) (W/m2)

Bare soil 4241 126 188 63
Grassland 43759 112 138 26
Riparian 3079 140 161 23
Shrubland 52201 129 169 41

Also listed are the average surface roughness values defined by each model for eac
is more sensitive to uncertainties in TR(ϕ) (Anderson et al.,
2005; Kustas et al., 2003).

5. Model validation

5.1. Validation strategy

In validating flux predictions from both modeling schemes
with respect to observed fluxes, the original formulations of
both models (as described in Section 2) were implemented and
where applicable, local calibration was performed or local
measurements of input data were used. For the SEBAL
scheme, this meant adjusting the empirical coefficients, c1, c2
and c3 in:

C ¼ TR=q0dðc1dqavg0 þ c2dq
avg2

0 Þdð1−c3dNDVI4Þ ð13Þ

where Γ is the assumed ratio between soil heat flux and net
radiation. In general practice, these adjustments are made
using measurements of NDVI, surface temperature and
instantaneous and daytime averaged (avg) surface albedo
along with soil heat flux and net radiation measurements.
Momentum roughness in SEBAL was estimated using the
NDVI relationship in Eq. (5). The TSEB does not use any
locally calibrated coefficients; however, in this exercise
ground-based observations of canopy height were used to
estimate roughness parameters for the major land cover types,
which were then spatially distributed using a land cover image
(French et al., 2003b; Schmugge et al., 1998). Meteorological
data (primarily wind speed, air temperature, and solar
radiation) used in both models were obtained locally from
the flux tower networks within the modeling domains.

Validation of model output was performed in comparison
with tower-based flux observations for all days having remote
sensing imagery. Model flux components were extracted from
the image pixels in the vicinity of the flux towers. A simple
analytical footprint model (Hsieh et al., 2000) applied to the
measurement data, taken at∼ 2 m above ground level, predicted
d by land cover class

SEBAL TSEB

MAD MAPD RMSD z0m z0m

(W/m2) (%) (W/m2) (m) (m)

133 150 144 0.035 0.0060
27 30 38 0.210 0.0630
63 125 92 0.320 0.3750
14 98 24 0.006 0.0004

SEBAL TSEB

MAD MAPD RMSD z0m z0m

(W/m2) (%) (W/m2) (m) (m)

64 51 66 0.014 0.005
31 28 36 0.029 0.010
36 26 48 0.054 0.100
42 33 47 0.019 0.050

h class.
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a maximum contribution within ∼50 m of the tower. Therefore,
pixels within, an area of ∼60×60 m upwind of the flux tower
site were averaged to represent the source area contributing to
the flux observations. The performance of the models was
evaluated using difference statistics suggested by Willmott
(1982), listed in Table 2.

5.2. Model validation in comparison with flux tower observations

Comparisons between modeled and observed fluxes for
Monsoon 90 and SGP '97 are shown in Fig. 2 and tabulated in
Table 3. Similar levels of agreement were obtained for both
experiments, and therefore they are not differentiated here.

Net radiation estimates from both models do not differ
significantly (i.e., within ∼ 50 W m−2) with the observations,
although SEBAL tends to underestimate this component. Soil
heat fluxes for both schemes are also in reasonable agreement
with ground observations.

With regard to the turbulent fluxes, H and LE, both models
performed reasonably well. Sensible heat flux estimates from
TSEB yielded an average Root Mean Square Difference
(RMSD) of approximately 35 W m− 2 with respect to
observations for both studies, while the average RMSD for H
Fig. 4. Differences between SEBAL and TSEB modeled sensible heat flux (W/m2) f
Differences are calculated by subtracting the SEBAL output from the TSEB output
from SEBAL was nearly 50 W m−2. RMSD values were higher
for LE (60 and 70 W m−2 for TSEB and SEBAL, respectively),
but still considered in reasonable agreement with the tower
measurements, which have intrinsic uncertainties on the order
of 50 W m−2 (Twine et al., 2000).

The effects of end-member selection for the 5 scenarios
described in Section 4 are demonstrated in Fig. 3, showing
changes in H of up to 50% for DOY 183 at SGP '97 for both
schemes, depending on choice of end-member value. Again, the
TSEB is most sensitive to changes in the upper limit of the
NDVI scaling (scenario 4), while SEBAL shows similar
sensitivity to the selection of hot and cold end-members at
each of the tower sites. The site where SEBAL gives the largest
errors in H (∼ 100 W m−2) was over dry, bare soil with high
sensible heating rates. The TSEB is not sensitive to end-member
selection for a bare soil site (see Fig. 3).

6. Model intercomparison

6.1. Intercomparison strategy

Flux towers are often placed in areas with relatively large
(several hundred meters) homogenous fetch in order to facilitate
or Monsoon'90 DOY 221 (upper image) and SGP '97 DOY 183 (lower image).
(TSEB-SEBAL). Approximate locations of the flux towers are also indicated.



Fig. 5. Comparison between TSEB (the two left histograms) and SEBAL (the two right histograms) estimates of the spatial distribution of sensible heat flux for bare
soil (SGP '97 site) and shrub land (Monsoon '90 site) cover types.

Fig. 6. SEBAL sensible heat output for DOY 183 in SGP '97 versus H
observations under case A (squares) and modifying hot pixel end-member
values (circles) of maximum surface temperature, TR-max,, surface roughness,
z0m, and available energy, RN−G, (see text). Open symbols represent the
grassland/pasture sites (ER01, ER05 and ER09) and closed symbols are for the
bare soil site (ER13).

378 W.J. Timmermans et al. / Remote Sensing of Environment 108 (2007) 369–384
interpretation of the observations (Schuepp et al., 1990), and
these sites will not typically be representative of the extreme or
unique conditions that are of special interest in environmental
monitoring (Moran, 2004). Good agreement with a handful of
flux tower observations does not guarantee that the models
compute consistent and/or reliable fluxes across a landscape.
Therefore, a closer look was taken at spatial differences in flux
fields generated by SEBAL and TSEB over the full modeling
domains at SGP '97 and Monsoon '90.

To facilitate this, we focus here on 1 day from each field
campaign, chosen to maximize the spatial variability in soil
moisture conditions and evaporative fluxes over the modeling
domains. This also facilitates the application of SEBAL since it
requires that a full range in hydrological conditions be present
within the scene. For Monsoon '90, DOY 221 had the largest
range in moisture and flux conditions (Schmugge et al., 1998),
while for SGP '97 the DOY 183 image was collected 4 days
after a rainfall event and showed marked contrasts in surface
temperature and fluxes (Norman et al., 2003).

Intercomparisons were performed for three sets of model
runs. Case A uses local meteorological forcing and observa-
tions, applying the original TSEB and SEBAL schemes
defining the various model input variables (as in the validation
study in Section 5). Case B is identical to Case A, except that
the SEBAL model is run using the more realistic values of
momentum roughness used in TSEB for Case A, based on
local field measurements and land cover information (see
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Table 4); hence the TSEB run is the same as for Case A. In
case C, the models are forced with remote meteorological data,
and other model inputs for both models are set to nominal
values (no local information used). For case C, both models
use only first order estimates of standard meteorological inputs
(radiation, air temperature, wind speed and relative humidity)
from remote meteorological stations for these two regions (i.e.
75 and 120 km from the SGP '97 and Monsoon '90 study
sites, respectively; see Norman et al., 2000). The TSEB model
was run using nominal values for the canopy height and other
vegetation variables assigned to each land cover class, while
SEBAL used the NDVI formulation (Eq. (5)) for defining
momentum roughness across the scene.

6.2. Case A: local inputs

Maps showing discrepancies in the H fields generated by the
two models for Monsoon'90 DOY 221 and SGP '97 DOY 183
using local inputs (Case A) are shown in Fig. 4. Despite the
acceptable agreement with flux measurements at the tower sites,
predictions of sensible heating from the two schemes differ by
more than 100 W m−2 in some areas (see Table 4).

It is clear, particularly for the SGP '97 scene, that the
differences occur in contiguous patches related to land cover.
Statistics comparing estimates of H from both models, stratified
by land cover class, are provided in Table 4.

The largest discrepancies exist over bare soil, where SEBAL
estimates of H are significantly lower than those from TSEB.
The TSEB estimates are in better agreement with observations
made over bare soil during SGP '97 (Fig. 3).

Histograms of H predicted by the two modeling schemes
for the Monsoon '90 shrub class and the SGP '97 bare soil
class show very different distributions and mean values
(Fig. 5). Similar differences, but to a lesser extent, are observed
for all other land cover types for both landscapes, where the
Table 5
Average H output and differences between TSEB and SEBAL (TSEB−SEBAL) fo

SGP '97 Case A (same results listed in Table 4) Case B

SEBAL TSEB SEBAL

Landcover bHN bHN bΔHN bHN

(W/m2) (W/m2) (W/m2) (W/m2)

Bare soil 89 222 133 49
Pasture 91 119 27 60
Riparian 51 106 56 88
Water 15 2 −12 26

Monsoon '90 Case A (same results listed in Table 4) Case B

SEBAL TSEB SEBAL

Landcover bHN bHN bΔHN bHN

(W/m2) (W/m2) (W/m2) (W/m2)

Bare soil 126 188 63 78
Grassland 112 138 26 67
Riparian 140 161 23 154
Shrubland 129 169 41 150
TSEB consistently predicts larger values of H on average than
does SEBAL.

The difference in H distribution is particularly notable for the
bare soil class, where one- and two-source models should
theoretically give similar output. The distributions for the shrub
class in Monsoon '90 are also quite different, with values from
TSEB being more centrally peaked. Flux distributions from the
two models were most similar for the grassland and pasture
cover class, which tended to have a more uniform canopy cover.

Difficulty in estimating H over sparsely vegetated surfaces is
a well-known phenomenon when dealing with one-source
models, and corrections are usually made by adjusting the
roughness length for heat or the kB−1 parameter (e.g., Stewart
et al., 1994; Verhoef et al., 1997) or by including empirical
“extra resistance” factors, parameterized to match observed
fluxes. However, it is not clear how to generalize these
empirical adjustments for different land cover types and cover
conditions under a one-source scheme. The two-source
approach provides a more physical framework for estimating
spatial variability in aerodynamic surface resistance by directly
considering the effects of varying vegetation cover amount on
the coupling between the soil and atmosphere through the soil
resistance, rs, in Eq. (8) (Kustas & Norman, 1999).

To isolate differences in model parameterizations of H from
differences in specification of RN and G, both models were also
run using identical fields of RN and G (generated by TSEB).
While this resulted in slight improvements in agreement
between the modeled H fields, they still showed major
discrepancies associated with land cover type. The MAD
between modeled H for the Monsoon site was approximately
60, 25, 20 and 35 W m−2 for bare soil, grassland, riparian and
shrubland areas, respectively. For the SGP site, the MAD in H
was around 120, 30, 80 and 20 W m−2 for bare soil, pasture,
riparian and water bodies, respectively. RMSD values for the
two sites were similar to those in Table 4 when both models
r the different cases, grouped by land cover class

Case C

TSEB SEBAL TSEB

bHN bΔHN bHN bHN bΔHN

(W/m2) (W/m2) (W/m2) (W/m2) (W/m2)

222 173 94 255 161
119 59 122 217 95
106 18 84 271 187

2 −24 39 −11 −50

Case C

TSEB SEBAL TSEB

bHN bΔHN bHN bHN bΔHN

(W/m2) (W/m2) (W/m2) (W/m2) (W/m2)

188 110 121 180 59
138 71 110 130 20
161 7 207 174 −33
169 19 128 151 23



Fig. 7. Differences between SEBAL and TSEB modeled sensible heat flux (W m−2) under case B (see text) for Monsoon '90 DOY 221 (upper image) and SGP '97
DOY 183 (lower image). Differences are calculated by subtracting the SEBAL output from the TSEB output (TSEB-SEBAL). Approximate locations of the flux
towers are also indicated.

Table 6
Difference statistics for H output (W m−2) with respect to observations for
different cases A, B, and C described in the text

Variable Case A Case B Case C

SEBAL TSEB SEBAL TSEB SEBAL TSEB

N 12 12 12 12 12 12
bON 146 146 146 146 146 146
bPN 115 161 94 161 120 169
So 47 47 47 47 47 47
Sp 30 53 44 53 28 63
MAD 41 22 59 22 47 38
MAPD 28 15 40 15 32 26
RMSD 56 30 74 30 59 48
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used the same RN and G. Therefore, differences in available
energy computations between the models were not a major
cause of the discrepancies in H and LE.

Attempts to adjust the end-members in surface temperature
to achieve improvement in agreement with TSEB estimates and
tower observations of H over bare soil surfaces caused
degradation in agreement over vegetated areas. This is
demonstrated in Fig. 6, where TR-max was chosen such that
the SEBAL estimate of H at the bare soil site in SGP '97
reproduced the observed flux on DOY 183.

Using TR-max=327 K, and available energy and z0m
appropriate for bare soil as the hot pixel end-member, SEBAL
now gives excellent agreement with H observed over the bare
soil site, but ∼100 W m-2 differences (overestimates) with
observed H for two of three grassland pasture sites (Fig. 6).

This behavior is due in part to the sensitivity of SEBAL to
selection of dry end-members, as demonstrated in Fig. 3.
Obtaining the coefficients for Eq. (4) involves flux inversion at
the dry end, as H at the wet end is assumed to be 0. The value of
δTasur retrieved at the dry end will depend on the magnitude of
rah estimated for that pixel. Therefore, the fundamental linear
relationship between TR and δTasur used in SEBAL (Eq. (6)) is
driven to a large extent by the roughness conditions assumed at
the selected dry end-member pixels. Residual errors in the
specification of z0h and z0m at this pixel are absorbed into the
retrieved δTasur endpoint, and therefore the regression is tuned
to the specific characteristics of that pixel. The resulting
regression will therefore give better agreement for areas with
comparable roughness characteristics (z0h and z0m) because the
errors will be similar in these areas. However, it may yield poor



Fig. 8. SEBAL estimated versus observed H values (W m−2) for Case A (using
momentum roughness values from Eq. (5); X symbols) and Case B (using
realistic roughness values; diamond symbols).
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results for areas having roughness characteristics very different
from those of the dry end-member. This suggests another type
of normalization procedure that incorporates land cover type
would be preferable, as suggested by Su (2002).

6.3. Case B: realistic roughness estimates

In Case A, there is clearly a problem with the estimation of
surface roughness length for momentum, z0m, via Eq. (5) in the
original version of SEBAL (Bastiaanssen et al., 1998a), where
roughness is linked only to NDVI. For the Monsoon'90 dataset,
Eq. (5) yields lower average roughness estimates for the
shrubland than for the grassland areas (see Table 4), contra-
dicting roughness observations made in the field (Menenti &
Ritchie, 1994). Re-calibration of Eq. (5), or attempts to use
other indices, corrected for bare soil influences (Bastiaanssen,
Fig. 9. Modeled versus observed sensible heat fluxes (W m−2) for Monsoon '90 (DO
(case B and C) described in the text. The cross symbols represent SEBAL and the c
2000), do not improve roughness estimates since the exponen-
tial behavior of the relation ensures either a monotonic increase
or decrease with increasing NDVI. As such, this equation will
not be able to capture typical roughness distributions for bare
soil, grassland and shrub landcover, as it does not consider a
major factor affecting roughness, namely the vegetation height
(e.g., in forested areas). Tasumi et al. (2000), proposed a more
physically-based formulation, using a multi-linear approach and
applying separate sets of coefficients in Eq. (5) for separate land
cover classes. Other remote sensing-based approaches should
also be explored (Hasager & Jensen, 1999; Jasinski & Crago,
1999).

When the more realistic surface roughness values from
TSEB are used in both models, model discrepancies are reduced
for the riparian classes and for the shrubland class in Monsoon
'90; however, differences increase significantly for all other
classes (compare Tables 4 and 5, and Figs. 4 and 7).

In particular, model agreement deteriorates over bare soil and
agreement between SEBAL and observed fluxes also deteriorates
when the more realistic values of roughness are used (Table 6).
The RMSD between measured and SEBAL model H estimates
for both experiments combined increases from ∼55 W m−2 for
Case A to ∼75 W m−2 for Case B (Table 6 and Fig. 8).

In comparison, the TSEB yields a RMSD of 30Wm−2 using
the same roughness fields (Table 6 and Fig. 9a.).

The fact that SEBAL does not work as well with physically
realistic roughness data raises questions about the robustness of
the algorithm over complex landscapes such as in SGP '97 and
Monsoon '90, where roughness and moisture conditions vary
widely across the modeling scene, resulting in potentially
significant deviations from the linear relationship between TR
and δTasur assumed in Eq. (6) (Norman et al., 2006).

6.4. Case C: remote inputs

Comparisons between observed and model H results for case
C are illustrated in Fig. 9b and suggest that both models perform
similarly at the Monsoon '90 and SGP '97 tower sites using no
local ancillary data. The RMSD values between modeled and
Y 221) and SGP '97(DOY 183) for both schemes under the different scenarios
ircles represent TSEB output.
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measured fluxes are around 50 and 60 W m−2 for the TSEB
model and SEBAL, respectively (Table 6). While this represents
only a slight increase in RMSD for SEBAL over case A, the
increase in TSEB model discrepancies with observations are
more significant (i.e., from 30 W m−2 for Case A), primarily
due to model-observation differences for the SGP site. One of
the strengths of SEBAL is that has been designed specifically to
use only nominal estimates of meteorological conditions,
available globally with adequate accuracy from regional
weather stations or simulations. When employed within the
coupled land surface-ABL modeling scheme (Anderson et al.,
1997, 2005; Kustas et al., 2001), however, the TSEB functions
similarly with both local and remote meteorological inputs.

7. Summary and conclusions

An intercomparison of output from two remote sensing-
based surface energy balance models is conducted over a range
of environmental conditions. SEBAL is a single-source model
requiring minimal ancillary data, but requiring subjective
specifications of representative hot/dry and wet/cool end-
member pixels within the scene to define model parameters/
variables. The second model examined, TSEB, is a two-source
(soil+vegetation) approach, which can be applied to any
landscape condition but requires ancillary inputs, most
importantly meteorological data and vegetation cover, for
computing reliable fluxes. Validation at specific sites using
tower flux observations showed that, in general, results from
both models were acceptable, although SEBAL had difficulties
estimating appropriate fluxes near the hydrologic extremes,
particularly the relatively dry areas.

A sensitivity analysis of TSEB and SEBAL to errors in
principle inputs revealed that uncertainty in remotely sensed
surface temperature had a significant effect on heat flux
estimation from both models, with somewhat higher sensitivity
for TSEB. For SEBAL, the choice of end-members in surface
temperature defining the dry and wet pixels for the image had a
significant effect on flux output. The TSEB model also had
sensitivity to uncertainties in fractional vegetation cover and/or
leaf area index. This sensitivity was greater at the high cover
condition where small variations in cover have a significant
effect on soil and canopy temperature estimation.

While both models showed similar agreement with tower
observations collected during two field experiments, spatial
agreement in sensible heat flux between the two models was
generally poor, depending on land cover type. The largest
discrepancies between TSEB and SEBAL occurred over bare
soil and dry/sparsely vegetated areas, where TSEB was in better
agreement with observations. Attempts to tune SEBAL by
adjusting temperature end-members or momentum roughness
(z0m) inputs improved model agreement for some land classes
while exacerbating discrepancies in other land use groups.

An empirical expression for estimating z0m based on
remotely sensed NDVI (Eq. (5)), used in the original form of
SEBAL (Bastiaanssen et al., 1998a), generated unrealistic
roughness values over the semi-arid field site of the Monsoon
'90 experiment, which was characterized by grassland with high
NDVI and low roughness, and sparse shrubland with low NDVI
and relatively high roughness. Use of more realistic roughness
fields in SEBAL generally degraded model agreement with
observed fluxes. This suggests that the internal calibration
procedures in SEBAL, particularly the assumption of linearity
between surface temperature and the aerodynamic temperature
gradient used in defining the sensible heat fluxes, do not appear
to be generally valid for this kind of strongly heterogeneous
landscape. The simulation studies of Norman et al. (2006)
suggest that several linear relationships between TR and δTasur,
with significantly different slopes, can in fact exist within a
given landscape depending on the variability in roughness and
moisture stress conditions present within the constituent land
cover classes.

The selection of the end-member pixels, particularly at the
dry end, can have a significant impact on the heat flux
distribution from SEBAL (Fig. 6). The results presented here
suggest that errors in roughness specification at the dry pixel
propagate into the regression equation used to retrieve δTasur
(Eq. (6)) and can corrupt flux estimates in areas with moisture
and roughness characteristics very different from those in the
dry pixel. In the case of DOY 183 during SGP '97, appropriate
end-member selections could be identified yielding good
sensible heating rates over hot, bare soil or over unstressed
pasture, but no single selection satisfied both conditions.

A comparison between sensible heat fields generated by the
TSEB and SEBAL models using remote meteorological data,
with other inputs for both models set to nominal values (no local
information used), indicated similar agreement with flux tower
observations. In this case, with minimal ancillary information
the reliability of SEBAL and the TSEB model flux estimates
was comparable. For regional applications, air temperature
boundary conditions can be supplied to the TSEB through a
coupled ABL modeling scheme, further reducing sensitivity to
errors in ancillary data fields (Anderson et al., 2007).

To gain greater insight, efforts are underway (Norman et al.,
2006) to evaluate both the TSEB and SEBAL schemes under a
much wider set of conditions generated from a complex soil–
plant–atmosphere model Cupid (Norman & Campbell, 1983).
Cupid simulates the transport of energy, mass and momentum
between plants and their soil and atmospheric environments and
computes the fluxes as well as aerodynamic and most
importantly radiometric temperature. Consequently, Cupid
provides a unique opportunity to assess the performance of
remote sensing-based models under a wider range of conditions
than observed experimentally (Kustas et al., 2006a,b, 2004).
These types of investigations should ultimately lead to
improved parameterizations and potentially to the development
of a hybrid model incorporating the strengths of both SEBAL
and the TSEB modeling schemes, as suggested by Norman et al.
(2006), having greater operational utility under a wider range of
landscape and environmental conditions.
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